On Lagrange’s four squares theorem with almost prime variables

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sums of almost equal prime squares

In this short note, we prove that almost all integers N satisfying N ≡ 3 (mod 24) and 5 -N or N ≡ 4 (mod 24) is the sum of three or four almost equal prime squares, respectively: N = p21 + · · ·+ p 2 j with |pi − (N/j) 1/2| ≤ N1/2−9/80+ε for j = 3 or 4 and 1 ≤ i ≤ j.

متن کامل

On generalisations of almost prime and weakly prime ideals

Let $R$ be a commutative ring with identity‎. ‎A proper ideal $P$ of $R$ is a $(n-1,n)$-$Phi_m$-prime ($(n-1,n)$-weakly prime) ideal if $a_1,ldots,a_nin R$‎, ‎$a_1cdots a_nin Pbackslash P^m$ ($a_1cdots a_nin Pbackslash {0}$) implies $a_1cdots a_{i-1}a_{i+1}cdots a_nin P$‎, ‎for some $iin{1,ldots,n}$; ($m,ngeq 2$)‎. ‎In this paper several results concerning $(n-1,n)$-$Phi_m$-prime and $(n-1,n)$-...

متن کامل

A Theorem of Minkowski; the Four Squares Theorem

We have already considered instances of the following type of problem: given a bounded subset Ω of Euclidean space R N , to determine #(Ω ∩ Z N), the number of integral points in Ω. It is clear however that there is no answer to the problem in this level of generality: an arbitrary Ω can have any number of lattice points whatsoever, including none at all. In [Gauss's Circle Problem], we counted...

متن کامل

on generalisations of almost prime and weakly prime ideals

let $r$ be a commutative ring with identity‎. ‎a proper ideal $p$ of $r$ is a $(n-1,n)$-$phi_m$-prime ($(n-1,n)$-weakly prime) ideal if $a_1,ldots,a_nin r$‎, ‎$a_1cdots a_nin pbackslash p^m$ ($a_1cdots a_nin pbackslash {0}$) implies $a_1cdots a_{i-1}a_{i+1}cdots a_nin p$‎, ‎for some $iin{1,ldots,n}$; ($m,ngeq 2$)‎. ‎in this paper several results concerning $(n-1,n)$-$phi_m$-prime and $(n-1,n)$-...

متن کامل

Geometryof Numbers Proof of Goo tzky’s Four-Squares Theorem

The totally positive algebraic integers of certain number fields have been shown to be the sums of four squares of integers from their respective fields. The case ofQð ffiffiffi 5 p Þ was demonstrated by Götzky and the cases of Qð ffiffiffi 2 p Þ and Qð ffiffiffi 3 p Þ were demonstrated by Cohn. In the latter situation, only those integers with even coefficient on the radical term could possibl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal für die reine und angewandte Mathematik (Crelles Journal)

سال: 2017

ISSN: 0075-4102,1435-5345

DOI: 10.1515/crelle-2014-0094